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Abstract4

Earthquakes i.e. frictional ruptures, are commonly described by singular so-5

lutions of shear crack motions. These solutions assume a square root singular-6

ity order around the rupture tip and a constant shear stress value behind it,7

implying scale-independent edge-localized energy. However, recent observa-8

tions of large-scale thermal weakening accompanied by decreasing shear stress9

potentially affecting the singularity order can challenge this assumption. In10

this study, we replicate earthquakes in a laboratory setting by conducting11

stick-slip experiments on PMMA samples under normal stress ranging from12

1 to 4 MPa. Strain gauges rosettes, located near the frictional interface,13

are used to analyze each rupture event, enabling the investigation of shear14

stress evolution, slip velocity, and material displacement as a function of dis-15

tance from the rupture tip. Our analysis of the rupture dynamics provides16

compelling experimental evidence of frictional rupture driven by enhanced17

thermal weakening. The observed rupture fronts exhibit unconventional sin-18

gularity orders and display slip-dependent breakdown work (on-fault dissi-19

pated energy). Moreover, these findings elucidate the challenges associated20
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with a priori estimating the energy budget controlling the velocity and fi-21

nal extent of a seismic rupture, when thermal weakening is activated during22

seismic slip.23

1. Introduction24

Frictional rupture phenomena, including natural earthquakes, are often25

described by singular solutions of shear crack motions (Freund, 1979; Palmer26

and Rice, 1973; Rice, 1980). For such cracks, the stress field at the rupture27

tip is described by a square root singularity (ξ = −0.5), constant residual28

stress is expected far behind the rupture tip, and the energy balance condi-29

tion equates the energy release rate G (i.e. rupture growth driving force) to30

a constant value of fracture energy Gc (i.e. resistance to rupture growth).31

This was confirmed by experimental and numerical observations, where the32

onset of frictional sliding, the evolution of the rupture speed, and the rupture33

length were predicted by Linear Elastic Fracture Mechanics (LEFM) (Bayart34

et al., 2016; Kammer et al., 2015; Kammer and McLaskey, 2019; Svetlizky35

and Fineberg, 2014; Xu et al., 2019), and suggesting that the fracture energy36

controlling the dynamics of the rupture tip might be an interface property.37

Such an analysis often relies on the hypothesis of negligible frictional weak-38

ening far away from the rupture tip (i.e. outside of the cohesive zone).39

However, it is widely recognized that fault shear stress is likely to evolve40

during seismic slip due to (i) velocity and slip dependencies (Marone, 1998),41

(ii) activation of thermal weakening processes (Di Toro et al., 2011; Hi-42

rose and Shimamoto, 2005; Rice, 2006), (iii) dilatancy inducing fluid pres-43

sure changes (Brantut, 2020; Rice and Rudnicki, 1979; Segall et al., 2010).44
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These changes in the residual stress behind the rupture tip could induce a45

slip dependency of the apparent fracture energy (nowadays more commonly46

called breakdown work (Tinti et al., 2005)) estimated for natural earthquakes47

(Abercrombie and Rice, 2005; Lambert and Lapusta, 2020), in contrast to48

the LEFM definition. The breakdown work (Wbd) is a quantity commonly49

used to study the energy balance of earthquakes and is defined as an energy50

term including all on-fault dissipative processes Wbd =
∫ Dfin

0
τ−τmindD, with51

τ the shear stress acting on the fault, τmin the minimum shear stress reached52

on-fault, and D the fault slip. It can be observed that, by definition, Wbd53

is a slip-dependent quantity. It is therefore important to be aware of how54

possible stress weakening may affect rupture dynamics and the energy release55

that controls it.56

In these regards, our recent work highlighted that a long-tailed weakening57

can emerge after a first rapid weakening during frictional rupture experiments58

(Paglialunga et al., 2022), resulting in a slip-dependent breakdown work.59

Despite this observation, the rupture dynamics, analyzed through LEFM,60

showed to be controlled by a constant fracture energy Gc, in agreement with61

previous studies (Bayart et al., 2016; Kammer et al., 2015; Kammer and62

McLaskey, 2019; Svetlizky and Fineberg, 2014; Xu et al., 2019). However,63

analyzing such frictional ruptures in the framework of LEFM relies on the64

assumption of constant residual stress behind the rupture tip. The observed65

long-tailed weakening could call into question this assumption and limit the66

framework’s applicability to fully describe frictional ruptures, explaining the67

observed mismatch between Gc and Wbd (Paglialunga et al., 2022).68

Moreover, theoretical studies have shown that continuous stress weaken-69
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ing can modify the singularity order controlling the stress and displacement70

fields around the rupture tip, deviating from the square-root singularity com-71

monly adopted in LEFM, and leading to an unconventional singularity order72

(ξ ̸= −0.5) (Garagash et al., 2011; Viesca and Garagash, 2015; Brantut and73

Viesca, 2017; Brener and Bouchbinder, 2021b). In particular, when fric-74

tional ruptures are described by ξ ̸= −0.5, the stress (σ) and displacement75

(u) fields obey respectively the following scaling relationships (Brener and76

Bouchbinder, 2021b): σ ≈ K(ξ)rξ and u ≈ K(ξ)r(ξ+1)/µ, with K(ξ) the ξ-77

generalized dynamic stress intensity factor, r = x − xtip the distance from78

the rupture tip, and µ the dynamic shear modulus. These lead to the follow-79

ing relation: Wbd ∼ [K(ξ)]2r(1+2ξ)/µ, valid for r > xc, with xc the cohesive80

zone size (eq.5 from (Brener and Bouchbinder, 2021b)). From this relation, it81

can be easily noticed that for ξ = −0.5, the Wbd dependence on r completely82

vanishes, making the breakdown work independent of the distance from the83

rupture tip. This does not happen when ξ ̸= −0.5, for which Wbd has a84

direct dependence on r.85

So far, the occurrence of such unconventional singularities during fric-86

tional ruptures has not been measured at the laboratory scale. In this paper,87

we present new data analyzed in an a recently-derived theoretical frame-88

work, demonstrating the first experimental evidence of strain and stress per-89

turbation caused by unconventional singularities associated with velocity-90

dependent frictional weakening. These experimental findings are supported91

by theoretical explanations about the emergence of unconventional singular92

fields during dynamic rupture.93
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2. Methods94

We performed stick-slip experiments in a biaxial apparatus working in a95

2D single shear configuration under an applied normal stress ranging from96

1 to 4 MPa (Figure 1 a). The experimental setup is the same one used and97

described in (Paglialunga et al., 2022). The tested samples consist of two98

polymethylmethacrylate (PMMA) blocks of dimensions (20x10x3) cm (top99

block) and (50x10x3) cm (bottom block), generating, once put into contact,100

an artificial fault of (20x3) cm. The external loading is imposed using two101

hydraulic pumps. The normal load is applied to the top block and kept102

constant while the shear load is manually increased and applied to the bottom103

block inducing, once reached the fault strength, stick-slip events. Strain gages104

rosettes (oriented along 45◦, 90◦, 135◦ to the fault plane), located 1 mm away105

from the frictional interface, were used to compute the local strain and stress106

tensors. The strain tensor rotation was obtained through the conversion of107

ε1, ε2, ε3 into εxx, εxy, εyy following:108

εxy =
ε3 − ε2

2
, (1)

109

εyy = ε1, (2)
110

εxx = ε3 + ε2 − ε1 (3)

Assuming plane stress conditions, the stress tensor was computed through111

the elastic properties of PMMA. The local strain temporal evolution shows112

clear perturbations concurrent with stick-slips (Figure 1 b). By zooming-113

in in time, details of the instability can be caught (Figure 1 c), showing a114

first (main) rupture front, followed by a series of secondary fronts probably115
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caused by rupture reflections at the fault edges. To study the rupture dy-116

namics, only the main front was considered in the present study, selecting a117

time window around the first strain perturbation (Figure 1 d, e). Note that118

the following analysis and discussions will exclusively focus on the dynamics119

of the main rupture front for each stick-slip event, and all the experimental120

curves that will be shown will refer to a defined time window, systematically121

smaller than the expected propagation time along the fault interface (for ex-122

ample, the rupture showed in Figure 1 e is described by a temporal window123

of ∼ 45 µs). The rupture propagation velocity (Cf) was estimated by com-124

puting the ratio between the distance among the strain gauge locations and125

the rupture front travel time from one location to the other. For each event,126

the particle velocity was then computed through the strain component par-127

allel to the slip direction as u̇x = −Cfεxx. This estimate has been shown to128

be comparable to distinct measurements of slip motions associated with the129

propagation of the seismic rupture in previous experimental studies (Svetl-130

izky and Fineberg, 2014; Paglialunga et al., 2022). The fault slip velocity was131

considered equal to twice the particle velocity measured through the strain132

gauges (V = 2u̇x), assuming an antisymmetrical distribution of slip and slip133

rate. This assumption seems legitimate given that the two samples have134

comparable dimensions, the same width, and are made of the same material.135

Integrating V during the propagation time, local material displacement could136

be estimated as well (ux). The slip displacement (D) of the fault is computed137

as twice (refer to the assumption described just above) the local displacement138

(D = 2ux) assuming the material displacement measured through the strain139

gauge 1 mm away from the fault is comparable to the one occurring on-fault.140
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Figure 1: a. Experimental setup - Direct shear biaxial apparatus with PMMA samples

generating an artificial fault. Strain gauges rosettes are located along the fault at a distance

of 1-1.5 mm from the fault plane. b. Temporal evolution of vertical strain (obtained

through high-frequency strain gauges acquisition system) at the three different locations

along the fault. When the fault experiences instability, the shear rupture propagates along

the interface and causes a strain perturbation concurrent with the passage of the front

(indicated by the blue arrows). Yellow shaded areas indicate the time window selection

shown in the following panel. c. Zoom-in of (b). d. Zoom-in of (.c) The red curve indicates

the strain gauge location shown in panel (e). e. Vertical strain temporal evolution for the

central location. Please note that the y-axis and x-axis limits change for each panel.
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Figure 2: Elastic fields around the rupture tip. Evolution of a. shear stress computed from

the measured shear strain (εxy), b. slip velocity computed from the measured horizontal

strain (εxx), and c. material displacement computed from the estimated slip velocity for

several events presenting different Cf (colorbar).

3. Results141

Each rupture event was studied through the evolution of shear stress, slip142

velocity, and material displacement as a function of the distance from the143

rupture tip (Fig.2). In all the studied events, local shear stress evolution144

exhibited an increase ahead of the rupture tip followed by a first significant145

decrease within the first micrometers of slip and a second mild one within146

larger distances (Fig.2a) as recently observed (Paglialunga et al., 2022). A147

rapid increase of slip velocity was observed concurrent with the passage of148

the rupture front, followed by a slow decay occurring with distance from the149

rupture tip. The peak slip velocity (Vmax) showed a clear dependence with150

estimated rupture speed, with ∼ 0.08 m/s for Cf ≈ 220 m/s up to ∼ 0.8151

m/s for Cf ≈ 840 m/s (Fig.2b). The evolution of material displacement (ux)152
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presented values close to 0 m ahead of the rupture tip (values slightly deviate153

from 0 due to off-fault measurement) and a sharp increase behind it (Fig.2c),154

with final displacements ranging between 3.9 and 28 µm. Subsequently, the155

fault strength weakening was analyzed through the evolution of the local156

shear stress (τ) with the fault’s slip displacement (D). The fault’s weakening157

presents a sharp decrease of shear stress occurring within the first microns of158

slip, followed by a milder decrease occurring within a larger amount of slip159

(Fig.3a). The breakdown work evolution was computed as160

Wbd =

∫ D

D((x−xtip)=0)

(τ − τ(D)) dD (4)

where D((x−xtip) = 0) is the displacement at the passage of the rupture tip.161

Since no slip is expected to occur ahead of the rupture tip on the fault plane162

(Cf = 0 when (x − xtip) > 0), the breakdown work evolution was computed163

only from slip occurring after the passage of the rupture tip (x − xtip) = 0,164

neglecting fictitious contributions due to elastic strain of the bulk at the165

measurement location. The evolution of Wbd showed a first increase with166

slip described by a slope close to 1 : 2 and a subsequent increase described167

by a slope of ∼ 1 : 0.6(±0.1) (Fig.3b), suggesting the existence of anomalous168

singularities (ξ ̸= −0.5). The power law exponent was measured by fitting169

the evolution of Wbd with D for D > Dc with a first-degree polynomial.170

Then, ξ was derived from the power law exponents estimates through (Brener171

and Bouchbinder, 2021a): Wbd(D) = Gc

(
D
Dc

)( 1+2ξ
1+ξ )

, finding values ranging172

between -0.4 and -0.2 (Fig.3c).173
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Figure 3: Slip-dependent breakdown work and the emergence of unconventional singular-

ities. a. Evolution of (τ − τres) with D defining the fault’s weakening for different events.

The integration of these curves leads to the evolution of Wbd with D for different Cf (b).

c. Evolution of estimated ξ values with peak slip velocity (Vmax).

4. Theoretical modeling of the kinematic fields around the rupture174

tip for unconventional singularity order175

While the first increase of breakdown work with slip can be explained by176

a slip-weakening behavior of the fault, the subsequent increase (power law of177

1:0.6) is unexpected from the conventional theory of LEFM. If such a con-178

tinuous weakening stage controlled the dynamics of the rupture, stress fields179

with a scaling σ ∝ rξ should be observed behind the rupture tip, as expected180

from theoretical studies (Brantut and Viesca, 2017; Brener and Bouchbinder,181

2021b; Garagash et al., 2011; Viesca and Garagash, 2015), with the singular-182

ity order ξ different from the square root singularity. To further investigate183

the dynamics of rupture, the temporal evolution of the strain perturbations184

generated by the passage of the rupture front (∆εxy,∆εxx) was compared185

10



to the theoretical predictions obtained considering both a square root singu-186

larity (LEFM) and an unconventional singularity (Brener and Bouchbinder,187

2021b).188

For the LEFM theoretical prediction, the stress field perturbation around189

the rupture tip takes the following general form (for a detailed description190

please refer to (Freund, 1998; Anderson, 2017)):191

∆σij(r, θ) =
KII√
2πr

ΣII
ij (θ, Cf) (5)

where KII the stress intensity factor, and ΣII
ij (θ, Cf) the angular variation192

function. Coordinates are expressed in the polar system with (r, θ) respec-193

tively the distance from the crack tip and the angle to the crack’s plane.194

In the unconventional theory framework, the stress fields were derived195

from the elastodynamic equations assuming a steady-state rupture velocity.196

The equations obtained present the following form:197

σxx(r, θ) =
2(ξ + 1)K

(ξ)
II√

2πR(Cf)
[2αs(1−α2

s +2α2
d)r

ξ
d sin(ξθd)−2αs(1+α2

s )r
ξ
s sin(ξθs)],

(6)198

τ(r, θ) =
2(ξ + 1)K

(ξ)
II√

2πR(Cf)
[4αsαdr

ξ
d cos(ξθd)− (1 + α2

s )
2rξs cos(ξθs)], (7)

199

σyy(r, θ) =
2(ξ + 1)K

(ξ)
II√

2πR(Cf)
[−2αs(1+α2

s )r
ξ
d sin(ξθd)−2αs(1+α2

s )r
ξ
ssin(ξθs)]. (8)

with K
(ξ)
II = limr→0

(
(2
√
2π)

(ξ+1)
r−ξτ(r, 0+−)

)
the ξ−generalized stress inten-200

sity factor, αd = 1−
(

Cf

Cd

)2

, αs = 1−
(

Cf

Cs

)2

, where (Cd,Cs) are respectively201

the P-wave and S-wave velocity, and R(Cf) = 4αdαs− (1+α2
s )

2 the Rayleigh202

function. (r, θ) are corrected for the distortion induced by the dynamic rup-203

ture velocity Cf , becoming θd = arctan(αd tan(θ)), θs = arctan(αs tan(θ))204

and rd = r

√
1−

(
Cf sin(θ)

Cd

)2

, rs = r

√
1−

(
Cf sin(θ)

Cs

)2

.205
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The displacement field related to the unconventional rupture phenomenon206

can be predicted by (Brener and Bouchbinder, 2021b):207

ux(r, θ) =
2K

(ξ)
II

µ
√
2π

(9)

208

uy(r, θ) =
2K

(ξ)
II

µ
√
2π

(
2αsr

(ξ+1)
d sin((ξ + 1)θd)− αs(1 + α2

s )r
(ξ+1)
s sin((ξ + 1)θs)

)
.

(10)

The values of ξ used to describe the experimental curves were obtained209

through the measured evolution of Wbd with D as discussed earlier (Brener210

and Bouchbinder, 2021b). The stress intensity factor was computed as211

(eq.5 from (Brener and Bouchbinder, 2021a)): K
(ξ)
II = EWbd(Dfin)

(1−ν2)fII(Cf)r(1+2ξ) , with212

E, ν respectively the elastic modulus and Poisson’s ratio, and fII(Cf) =213

αs

(1−ν)R(Cf)

C2
f

C2
S
the universal function of rupture velocity.214

5. Description of strain perturbations with theoretical predictions215

We now compare the theoretical predictions to experimental strain and216

displacement evolution of two different frictional ruptures presenting values217

of ξ = −0.32,−0.27, and final values of Wbd of 9.5 and 11 J/m2, respectively218

(Fig.3b). This comparison is presented in Fig.4. Note that for both models,219

i.e. LEFM and unconventional theory, the predictions of strain fail ahead of220

the rupture tip. This is explained by the fact that these models assume a221

dynamic rupture driven along an infinite fault by a shear stress equal to the222

residual stress. As such, they overlook any finite-size effects emerging from223

the finiteness of the specimen size and the distance to the applied boundary224

conditions. Moreover, please note that the measurement location was chosen225
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to be the closest possible to the fault plane (strain gauges at ∼1 mm), to cap-226

ture stress and displacement evolution close to the ones occurring on-fault.227

However, this implies the likelihood to perform measurements within the co-228

hesive zone, expected to be for PMMA around 2-5 mm. This area (indicated229

in Fig.4a-d with the shaded grey area) was excluded when performing the230

LEFM fits, given that this model assumes conditions of small scale yielding231

(dissipation zone small with respect to the other length scales).232

The experimental data were compared with the predictions of LEFM233

(ξ = −0.5) inverting Gc from the best possible fit. The inversion and the234

minimization algorithm employed to obtain the best solution of Gc use si-235

multaneously two strain components (∆εxx, ∆εxy) following the method de-236

scribed in previous studies (Svetlizky and Fineberg, 2014) (Fig.4). ∆εxx and237

∆εxy are obtained by subtracting the initial strain from εxx and the residual238

strain from εxy.239

The best fits output values of Gc slightly different from the values of Wbd240

estimated through the integration of the slip stress curves. The LEFM pre-241

dictions do not deviate excessively from the experimental curves for either242

event, showing an acceptable but not accurate description of the strain per-243

turbations for ∆εxx and ∆εxy(Fig.4a,b). A stronger deviation is observed for244

∆εxy, particularly in the case of ξ = −0.27, independently of the distance245

from the rupture tip (Fig.4b). In the second stage, predictions accounting246

for the unconventional model were computed. The values of ξ and Wbd mea-247

sured as described in 3 were imposed. The unconventional model returned,248

for the two events, satisfactory predictions of the evolution of ∆εxx and ∆εxy249

(Fig.4a,b). It can be noted that the greater the deviation from ξ = −0.5,250
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Figure 4: Strain and displacement field described by unconventional singularity for two

different events (respectively top and bottom panels). a., b. Comparison of the mea-

sured strain perturbations ∆εxx and ∆εxy with the theoretical predictions considering: i)

the estimated unconventional singularities respectively ξ=-0.32 (a) and ξ=-0.27 (b), and

G = Wbd (in black) and ii) the LEFM conventional singularity ξ=-0.5 with G = Gc (the

best fit)(in grey). c., d. Evolution of the material displacement (ux) with predictions for

unconventional and conventional singularity. e., f. Comparison of the experimental evolu-

tion of breakdown work with slip estimated at gauge location with theoretical predictions

for unconventional theory (black solid line) and LEFM (grey solid line).
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the greater the disparities between LEFM and the unconventional model251

(Fig.4a,b). In addition, the prediction obtained for ux (Fig.4c,d) is close252

to the experimental evolution in terms of magnitude. However, while ux253

evolution is similar within the first microns, the experimental data deviate254

from the theoretical prediction far behind the rupture tip (Fig.4c,d). The255

model returned reasonable predictions of ux for ξ=-0.32, and adequate ones256

for ξ=-0.27.257

Finally, we compare the experimental data to both models’ theoretical258

predictions of the evolution of breakdown work with slip behind the crack259

tip. Starting from the stress evolution estimates computed for both LEFM260

and unconventional model, the breakdown work was computed following eq.261

4. LEFM predictions deviate in both quantity and temporal evolution from262

the experimental data. On the contrary, the unconventional model provides263

a good prediction, particularly for D > Dc, as expected from the unconven-264

tional theory (Fig.4 e, f). These results highlight that while LEFM provides265

reasonable estimates of fracture energy, the unconventional theory provides266

more coherent predictions of breakdown work evolution with slip when en-267

hanced weakening is observed.268

6. Flash heating as a possible weakening mechanism269

These results provide the first complete evidence of unconventional stress270

fields during the dynamic propagation of laboratory frictional rupture, caused271

by continuous stress weakening behind the rupture tip. The observed un-272

conventional singularity orders could emerge, among others, from frictional273

weakening mechanisms such as; thermal activation (Bar-sinai et al., 2014),274
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viscous friction (Brener and Marchenko, 2002), powder lubrication (Reches275

and Lockner, 2010), flash heating (Molinari et al., 1999; Rice, 2006; Brantut276

and Viesca, 2017), thermal pressurization (Rice, 2006; Viesca and Garagash,277

2015). Among these, flash heating has been shown to be activated under278

similar experimental conditions (Rubino et al., 2017), and thus could be the279

best candidate to explain the unconventional stress fields observed in our280

experiments. Moreover, the high slip rate measured near-fault enhances the281

activation of flash heating as previously shown (Molinari et al., 1999; Rice,282

2006; Goldsby and Tullis, 2011). This agrees with the clear dependence of ξ283

values with maximum slip rate and rupture velocity observed in our events284

(Fig.3c): higher Vmax are associated with ξ values that deviate from the285

conventional value (-0.5).286

Flash heating is activated when the fault slip velocity becomes higher287

than a critical weakening slip velocity (Vw), causing mechanical degradation288

of contact asperities during their lifetime (Rice, 2006; Goldsby and Tullis,289

2011). The temperature reached at the asperities was computed trough290

Tasp = Tamb + 1
(ρcp

√
kπ)

τcV
√
tc with Tamb the ambient initial temperature,291

τc the stress acting on the single asperity, tc the lifetime of a contact, ρ the292

bulk density, cp the bulk specific heat and k the thermal diffusivity. Under293

our experimental conditions, the temperature increased with slip velocity, ex-294

ceeding the material’s melting temperature (Tasp > Tmelting = 160◦) (Fig.5a,295

b), and indicating that melting of asperities probably occurred in our exper-296

iments (Rubino et al., 2017). We compared the evolution of Wbd with D,297

normalized respectively by Gc and Dc, with asymptotic solutions for flash298

heating phenomena (Brantut and Viesca, 2017).299
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For D < Dc (small slip), the evolution of Wbd can be described by the300

asymptotic solution derived for adiabatic conditions (Brantut and Viesca,301

2017):302

Wbd = ρc(Tm − Tamb)w
√
2π

(
D

V tAw +D

)2

(11)

where tAw = ρc(Tm−Tf)/τa(
√
2πw)/Vw (time required for a layer of thickness303

√
2πw to reach Tmelting ), w is the fault’s width (assumed here as w = 4a with304

a the asperity size), and τa is a normal stress dependent contact shear stress305

at the origin of the change in temperature in the fault layer (Fig.5c). In306

presence of gouge along the interface, τa will correspond to the macroscopic307

shear stress τ0. Along bare rock interfaces, τa = τc
a

∆Lasp
, where ∆Lasp is308

the average distance between two asperities (see Annex A for details). Note309

that this model assumes a constant sliding velocity V . This assumption310

looks fairly reasonable in our case, as the first part of the stress weakening311

(D < Dc) occurs in a very short time window during which V is nearly312

constant.313

For D > Dc, a second asymptotic solution considering the coupled elas-314

todynamics and frictional motions of the propagating rupture can be used315

(Brantut and Viesca, 2017):316

Wbd = τcD
SP
w

(
µVw

3πτaCf

)(1/3)(
D

DSP
w

)(2/3)

(12)

where DSP
w = Vwα(

ρc(Tw−Tf)
τaVw

)2 is a characteristic slip weakening distance.317

While this asymptotic solution is expected to describe the evolution of break-318

down work at a larger seismic slip than the one observed in our experiments,319

this equation can still be used here because (i) heat diffusion at the scale of320

asperities is expected to control fault weakening when D > Dc and (ii) τa321
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Figure 5: a. Evolution of local shear stress (τ), with slip velocity for one event. b. Tem-

perature evolution with slip velocity at asperity scale compared with melting temperature

of PMMA (Tm = 160). c. Slip dependence of breakdown work (curves are normalized

respectively by Gc and Dc). Wbd evolution exhibits two power laws with exponents of 2

and 0.6. The experimental curves are all described by the asymptotic solutions related to

an adiabatic regime for small D and a diffusive regime for large D (Brantut and Viesca,

2017). The dotted black line shows the expected evolution of Wbd assuming LEFM at the

strain gauges position.
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increases with τ0, through the increase of a
∆Lasp

with σn.322

Assuming our experimental estimate of Cf , this asymptote well describes the323

second branch of the evolution of Wbd with D (power law with an exponent324

of 2/3, Fig.5c). Such scaling is also observed at large slip for thermal pres-325

surization in drained conditions, suggesting that this exponent is related to326

diffusion mechanisms regulating the weakening of faulting during seismic slip327

(Brantut and Viesca, 2017; Viesca and Garagash, 2015).328

Importantly, an energy dissipation Wbd greater than the fracture energy329

Gc was already observed in Barras et al. (2020) for sliding interfaces whose330

frictional behavior is described by a rate-and-state friction law. Despite this331

excess, the rupture dynamics where well described by a conventional LEFM332

analysis (with ξ = −0.5). This was later justified by Brener and Bouchbinder333

(2021a), who showed that ruptures along interfaces obeying rate-and-state334

friction displayed a singularity ξ = −0.406 ≃ −0.5, which corresponds to the335

lower end. However, fault characteristics (e.g. roughness, fluid diffusivity,336

etc.) and external factors such as initial stress state or on-fault tempera-337

ture can alter the friction law that controls interface slip (i.e. flash heating,338

thermal pressurization, and others) and change the singularity observed near339

the rupture accordingly. In the case of flash heating, the observed evolu-340

tion of breakdown work with slip generates, for example, a singularity order341

ξ = −0.25 (Brantut and Viesca, 2017), which corresponds to the higher-end342

exponents of Fig. 3. In our experiments, continuous values of exponents343

ξ have been measured between ξ = −0.42 (rate-and-state) and ξ = −0.22344

(flash heating). This can be caused by the presence of a population of contact345

asperities, each of which have a different size, experience a different normal346
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and shear stress, and reach thus a different value of temperature and slip347

velocity during rupture (implying that not necessarily all contact asperities348

experience flash heating) resulting, on average, in a smooth transition from349

rate and state frictional contact for the lower slip velocities (nearly conven-350

tional, ξ = −0.5) to flash heating for larger slip velocities (unconventional,351

ξ = −0.25).352

7. Implications and conclusions353

These experimental results show that the continuous weakening activated354

along the fault can modify the singularity order governing displacement and355

stress fields around the rupture tip, inducing a slip and scale-dependent356

breakdown work, rather than a constant one. Moreover, this work high-357

lights from an experimental point of view that frictional rupture analysis in358

the linear elastic fracture framework might not always be sufficient when fric-359

tional weakening mechanisms occur away from the rupture tip. Importantly,360

as long as the residual stress does not reach a steady-state value far from361

the rupture tip, as happens for thermal weakening processes, the singular362

fields will hardly recover the conventional square-root singularity, indepen-363

dently of the rupture size. One could nonetheless assess the dynamics of364

such earthquakes, building on a Griffith criterion adapted to unconventional365

singularities (see Eq. 7 (Brener and Bouchbinder, 2021b)). However, this366

would involve both the fracture energy and the cohesive zone size that of-367

ten depends on the structural problem (loading conditions, fault geometry).368

Furthermore, the activation of thermal mechanisms depends not only on the369

rupture characteristics such as crack velocity but also on ambient conditions370
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(such as initial temperature) and possibly slip history controlling asperity371

roughness and strength. As a result, both rupture dynamics and fault weak-372

ening are expected to be governed by fault geometry and rheology and may373

vary depending on the natural environment.374

Our new results highlight the difficulty in a priori estimating the relevant375

parameters governing the dynamics of the seismic rupture, expected to con-376

trol the final rupture length (earthquake size). One may legitimately wonder377

whether theoretical models will be able to capture these complex behaviors,378

or whether numerical simulations, as proposed in recent studies, will be re-379

quired instead (Lambert and Lapusta, 2020).380

However, together with the recent development of the unconventional singu-381

larity theory (Brener and Bouchbinder, 2021b), our results open the door for382

a better understanding of the rupture dynamics and energy budget of natural383

earthquakes, through the possible evaluation of the equations of motions for384

unconventional rupture phenomena.385
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Appendix A.386

For the estimate of ∆Lasp, a simplified description of the interface rough-387

ness is used, considering only one population of asperities of typical size a388

and height h, separated by an average distance ∆Lasp. The number of as-389

perities was computed considering the following relationship Ar

An
= Gc

GPMMA
390

(values of GPMMA coming from Vaseduvan et al., 2020), which lead to N2D =391

Gc

GPMMA

An

πD2
asp/4

.392

Assuming an equidistant spacing between the asperities in both direc-393

tions, the total number of asperities can be written as N2D = NxNy with Nx394

and Ny respectively the number of rows and columns of asperities located in395

the x and y directions. The latter numbers are related to the interface dimen-396

sions through Nx

Ny
= Lf

Wf
, with Lf and Wf respectively the length and width397

of the interface. Considering this as a 1-D problem, the number of asperities398

along the interface in the slip direction reads N1D =
√

N2D
Lf

Wf
. The distance399

between two asperities could then be estimated as ∆Lasp = Lf−N1DDasp

N1D+1
. The400

contact stress at the origin of the change in temperature of asperities during401

the seismic slip can be expressed as τeff = τc
a

∆Lasp
.402
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